
Data Fitting Functions
Data Fitting functions in Intel® MKL provide spline-based interpolation capabilities that you can use to
approximate functions, function derivatives or integrals, and perform cell search operations.

The Data Fitting component is task based. The task is a data structure or descriptor that holds the
parameters related to a specific Data Fitting operation. You can modify the task parameters using the task
editing functionality of the library.

For definition of the implemented operations, see Mathematical Conventions.

Data Fitting routines use the following workflow to process a task:

1. Create a task or multiple tasks.
2. Modify the task parameters.
3. Perform a Data Fitting computation.
4. Destroy the task or tasks.

All Data Fitting functions fall into the following categories:

Task Creation and Initialization Routines - routines that create a new Data Fitting task descriptor and
initialize the most common parameters, such as partition of the interpolation interval, values of the vector-
valued function, and the parameters describing their structure.

Task Editors - routines that set or modify parameters in an existing Data Fitting task.

Computational Routines - routines that perform Data Fitting computations, such as construction of a spline,
interpolation, computation of derivatives and integrals, and search.

Task Destructors - routines that delete Data Fitting task descriptors and deallocate resources.

You can access the Data Fitting routines through the Fortran and C89/C99 language interfaces. You can also
use the C89 interface with more recent versions of C/C++, or the Fortran 90 interface with programs written
in Fortran 95

The ${MKL}/include directory of the Intel® MKL contains the following Data Fitting header files:

• C/C++: mkl_df.h
• Fortran: mkl_df.f90 and mkl_df.f77
You can find examples that demonstrate C/C++ and Fortran usage of Data Fitting routines in the ${MKL}/
examples/datafittingc and ${MKL}/examples/datafittingf directories, respectively.

Naming Conventions
The Fortran interfaces of the Data Fitting functions are in lowercase, while the names of the types and
constants are in uppercase.

The C/C++ interface of the Data Fitting functions, types, and constants are case-sensitive and can be in
lowercase, uppercase, and mixed case.

The names of all routines have the following structure:

df[datatype]<base_name>
where

• df is a prefix indicating that the routine belongs to the Data Fitting component of Intel MKL.
• [datatype] field specifies the type of the input and/or output data and can be s (for the single precision

real type), d (for the double precision real type), or i (for the integer type). This field is omitted in the
names of the routines that are not data type dependent.

• <base_name> field specifies the functionality the routine performs. For example, this field can be
NewTask1D, Interpolate1D, or DeleteTask.

Data Fitting Functions

3

Data Types
The Data Fitting component provides routines for processing single and double precision real data types. The
results of cell search operations are returned as a generic integer data type.

All Data Fitting routines use the following data type:

Type Data Object

Fortran: TYPE(DF_TASK)
C: DFTaskPtr

Pointer to a task

NOTE
The actual size of the generic integer type is platform-dependent. Before compiling your application,
you need to set an appropriate byte size for integers. For details, see section Using the ILP64 Interface
vs. LP64 Interface of the Intel® MKL User's Guide.

Mathematical Conventions
This section explains the notation used for Data Fitting function descriptions. Spline notations are based on
the terminology and definitions of [deBoor2001]. The Subbotin quadratic spline definition follows the
conventions of [StechSub76]. The quasi-uniform partition definition is based on [Schumacher2007]

Mathematical Notation in the Data Fitting Component
Concept Mathematical Notation

Partition of interpolation interval [a, b] , where

• xi denotes breakpoints.
• [xi, xi+1) denotes a sub-interval (cell) of size

Δi=xi+1-xi .

{xi}i=1,...,n, where a = x1 < x2<... <xn = b

Quasi-uniform partition of interpolation interval [a,
b]

Partition {xi}i=1,...,n which meets the constraint with
a constant C defined as

1 ≤M/ m≤C,

where

• M = maxi=1,...,n-1 (Δi)
• m = mini=1,...,n-1 (Δi)
• Δi = xi+1 - xi

Vector-valued function of dimension p being fit ƒ(x) = (ƒ1(x),..., ƒp(x))

Piecewise polynomial (PP) function ƒ of order k+1 ƒ(x) ≔ Pi (x), if x∈ [xi, xi+1), i = 1,..., n-1

where

• {xi}i= 1,..., n is a strictly increasing sequence of
breakpoints.

• Pi(x) = ci,0 + ci,1(x - xi) + ... + ci,k(x - xi)k is a
polynomial of degree k (order k+1) over the
interval x∈ [xi, xi+1).

Function p agrees with function g at the points
{xi}i=1,...,n .

For every point ζ in sequence {xi}i=1,...,n that occurs
m times, the equality p(i-1)(ζ) = g(i-1)(ζ) holds for all
i = 1,...,m, where p(i)(t) is the derivative of the i-th
order.

 Intel® Math Kernel Library

4

Concept Mathematical Notation

The k-th divided difference of function g at points
xi,..., xi + k. This difference is the leading coefficient
of the polynomial of order k+1 that agrees with g at
xi,..., xi + k.

[xi,..., xi + k] g

In particular,

• [x1]g = g(x1)
• [x1, x2] g = (g(x1) - g(x2)) / (x1 - x2)

A k-order derivative of interpolant ƒ(x) at
interpolation site .

Interpolants to the Function g at x1,..., xn and Boundary Conditions
Concept Mathematical Notation

Linear interpolant Pi(x) = c1, i + c2, i(x - xi),

where

• x∈ [xi, xi+1)
• c1, i = g(xi)
• c2, i = [xi, xi+1]g
• i = 1,..., n-1

Piecewise parabolic interpolant Pi(x) = c1, i + c2, i(x - xi) + c3, i(x - xi)2, x∈ [xi, xi+1)

Coefficients c1, i, c2, i, and c3, i depend on the conditions:

• Pi(xi) = g(xi)
• Pi(xi+1) = g(xi+1)
• Pi((xi+1 + xi) / 2) = vi+1

where parameter vi+1 depends on the interpolant being
continuously differentiable:

Pi-1
(1)(xi) = Pi

(1)(xi)

Piecewise parabolic Subbotin
interpolant

P(x) = Pi(x) = c1,i+c2,i(x-xi)+c3,i(x-xi)2+d3,i((x-ti)+)2,

where

• x∈ [ti, ti+1)
• {ti}i=1,...,n+1 is a sequence of knots such that

• t1 = x1, tn+1 = xn
• ti∈ (xi-1, xi), i = 2,..., n

•

Coefficients c1,i, c2,i, c3,i, and d3,i depend on the following
conditions:

• Pi(xi) = g(xi), Pi(xi+1) = g(xi+1)
• P(x) is a continuously differentiable polynomial of the second

degree on [ti, ti+1), i = 1,..., n.

Piecewise cubic Hermite interpolant Pi(x) = c1,i + c2,i(x - xi) + c3,i(x - xi)2 + c4,i(x - xi)3,

where

• x∈ [xi, xi+1)
• c1,i = g(xi)
• c2,i = si
• c3,i = ([xi, xi+1]g - si) / (Δxi) - c4,i(Δxi)
• c4,i = (si + si+1 - 2[xi, xi+1]g) / (Δxi)2

Data Fitting Functions

5

Concept Mathematical Notation

• i = 1,..., n-1
• si = g(1)(xi)

Piecewise cubic Bessel interpolant Pi(x) = c1,i + c2,i(x - xi) + c3,i(x - xi)2 + c4,i(x - xi)3,

where

• x∈ [xi, xi+1)
• c1,i = g(xi)
• c2,i = si
• c3,i = ([xi, xi+1]g - si) / (Δxi) - c4,i(Δxi)
• c4,i = (si + si+1 - 2[xi, xi+1]g) / (Δxi)2

• i = 1,..., n-1
• si = (Δxi[xi-1, xi]g + Δxi-1[xi, xi+1]g) / (Δxi + Δxi+1)

Piecewise cubic Akima interpolant Pi(x) = c1,i + c2,i(x - xi) + c3,i(x - xi)2 + c4,i(x - xi)3,

where

• x∈ [xi, xi+1)
• c1,i = g(xi)
• c2,i = si
• c3,i = ([xi, xi+1]g - si) / (Δxi) - c4,i(Δxi)
• c4,i = (si + si+1 - 2[xi, xi+1]g) / (Δxi)2

• i = 1,..., n-1
• si = (wi+1[xi-1, xi]g + wi-1[xi, xi+1]g) / (wi+1 + wi-1),

where

wi = |[xi, xi+1]g - [xi-1, xi]g|

Piecewise natural cubic interpolant Pi(x) = c1,i + c2,i(x - xi) + c3,i(x - xi)2 + c4,i(x - xi)3,

where

• x∈ [xi, xi+1)
• c1,i = g(xi)
• c2,i = si
• c3,i = ([xi, xi+1]g - si) / (Δxi) - c4,i(Δxi)
• c4,i = (si + si+1 - 2[xi, xi+1]g) / (Δxi)2

• i = 1,..., n-1
• Parameter si depends on the condition that the interpolant is

twice continuously differentiable: Pi-1
(2)(xi) = Pi

(2)(xi).

Not-a-knot boundary condition. Parameters s1 and sn provide P1 = P2 and Pn-1 = Pn, so that the
first and the last interior breakpoints are inactive.

Free-end boundary condition. ƒ"(x1) = ƒ"(xn) = 0

Look-up interpolator for discrete set
of points (x1, y1),..., (xn, yn) .

 Intel® Math Kernel Library

6

Concept Mathematical Notation

Step-wise constant continuous right
interpolator.

Step-wise constant continuous left
interpolator.

Data Fitting Usage Model
Consider an algorithm that uses the Data Fitting functions. Typically, such algorithms consist of four steps or
stages:

1. Create a task. You can call the Data Fitting function several times to create multiple tasks.

status = dfdNewTask1D(&task, nx, x, xhint, ny, y, yhint);
2. Modify the task parameters.

status = dfdEditPPSpline1D(task, s_order, c_type, bc_type, bc, ic_type, ic,
scoeff, scoeffhint);

3. Perform Data Fitting spline-based computations. You may reiterate steps 2-3 as needed.

status = dfdInterpolate1D(task, estimate, method, nsite, site, sitehint, ndorder,
dorder, datahint, r, rhint, cell);

4. Destroy the task or tasks.

status = dfDeleteTask(&task);

See Also
Data Fitting Usage Examples

Data Fitting Usage Examples
The examples below illustrate several operations that you can perform with Data Fitting routines. If you want
to run or reuse similar examples, you can get both C and Fortran source code in the .\examples
\datafittingc and .\examples\datafittingf subdirectories of the Intel MKL installation directory.

The following C example demonstrates the construction of a linear spline using Data Fitting routines. The
spline approximates a scalar function defined on non-uniform partition. The coefficients of the spline are
returned as a one-dimensional array:

C Example of Linear Spline Construction
#include "mkl.h"
#define N 500 /* Size of partition, number of breakpoints */
#define SPLINE_ORDER DF_PP_LINEAR /* Linear spline to construct */

int main()

Data Fitting Functions

7

{
 int status; /* Status of a Data Fitting operation */
 DFTaskPtr task; /* Data Fitting operations are task based */

 /* Parameters describing the partition */
 MKL_INT nx; /* The size of partition x */
 double x[N]; /* Partition x */
 MKL_INT xhint; /* Additional information about the structure of breakpoints */

 /* Parameters describing the function */
 MKL_INT ny; /* Function dimension */
 double y[N]; /* Function values at the breakpoints */
 MKL_INT yhint; /* Additional information about the function */

 /* Parameters describing the spline */
 MKL_INT s_order; /* Spline order */
 MKL_INT s_type; /* Spline type */
 MKL_INT ic_type; /* Type of internal conditions */
 MKL_INT* ic; /* Array of internal conditions */
 MKL_INT bc_type; /* Type of boundary conditions */
 MKL_INT* bc; /* Array of boundary conditions */

 double scoeff[(N-1)* ORDER]; /* Array of spline coefficients */
 MKL_INT scoeffhint; /* Additional information about the coefficients */

 /* Initialize the partition */
 nx = N;
 /* Set values of partition x */
 ...
 xhint = DF_NO_HINT; /* No additional information about the function is provided.
 By default, the partition is non-uniform. */
 /* Initialize the function */
 ny = 1; /* The function is scalar. */

 /* Set function values */
 ...
 yhint = DF_NO_HINT; /* No additional information about the function is provided. */

 /* Create a Data Fitting task */
 status = dfdNewTask1D(&task, nx, x, xhint, ny, y, yhint);

 /* Check the Data Fitting operation status */
 ...

 /* Initialize spline parameters */
 s_order = DF_PP_LINEAR; /* Spline is of the second order. */
 s_type = DF_PP_DEFAULT; /* Spline is of the default type. */

 /* Define internal conditions for linear spline construction (none in this example) */
 ic_type = DF_NO_IC;
 ic = NULL;

 /* Define boundary conditions for linear spline construction (none in this example) */
 bc_type = DF_NO_BC;
 bc = NULL;
 scoeffhint = DF_NO_HINT; /* No additional information about the spline. */

 /* Set spline parameters in the Data Fitting task */
 status = dfdEditPPSpline1D(task, s_order, s_type, bc_type, bc, ic_type,
 ic, scoeff, scoeffhint);

 Intel® Math Kernel Library

8

 /* Check the Data Fitting operation status */
 ...

 /* Use a standard computation method to construct a linear spline: */
 /* Pi(x) = c1,i+c2,i(x-xi), i=0,..., N-2 */
 /* The library packs spline coefficients to array scoeff. */
 /* scoeff[2*i+0]=c1,i and scoeff[2*i+1]=c2,i, i=0,..., N-2 */
 status = dfdConstruct1D(task, DF_PP_SPLINE, DF_METHOD_STD);

 /* Check the Data Fitting operation status */
 ...

 /* Process spline coefficients */
 ...

 /* Deallocate Data Fitting task resources */
 status = dfDeleteTask(&task) ;

 /* Check the Data Fitting operation status */
 ...
 return 0 ;
}
The following C example demonstrates cubic spline-based interpolation using Data Fitting routines. In this
example, a scalar function defined on non-uniform partition is approximated by Bessel cubic spline using not-
a-knot boundary conditions. Once the spline is constructed, you can use the spline to compute spline values
at the given sites. Computation results are packed by the Data Fitting routine in row-major format.

C Example of Cubic Spline-Based Interpolation
#include "mkl.h"

#define NX 100 /* Size of partition, number of breakpoints */
#define NSITE 1000 /* Number of interpolation sites */
#define SPLINE_ORDER DF_PP_CUBIC /* A cubic spline to construct */

int main()
{
 int status; /* Status of a Data Fitting operation */
 DFTaskPtr task; /* Data Fitting operations are task based */

 /* Parameters describing the partition */
 MKL_INT nx; /* The size of partition x */
 double x[N]; /* Partition x */
 MKL_INT xhint; /* Additional information about the structure of breakpoints */

 /* Parameters describing the function */
 MKL_INT ny; /* Function dimension */
 double y[N]; /* Function values at the breakpoints */
 MKL_INT yhint; /* Additional information about the function */

 /* Parameters describing the spline */
 MKL_INT s_order; /* Spline order */
 MKL_INT s_type; /* Spline type */
 MKL_INT ic_type; /* Type of internal conditions */
 MKL_INT* ic; /* Array of internal conditions */
 MKL_INT bc_type; /* Type of boundary conditions */
 MKL_INT* bc; /* Array of boundary conditions */

 double scoeff[(N-1)* ORDER]; /* Array of spline coefficients */

Data Fitting Functions

9

 MKL_INT scoeffhint; /* Additional information about the coefficients */

 /* Parameters describing interpolation computations */
 MKL_INT nsite; /* Number of interpolation sites */
 double site[NSITE]; /* Array of interpolation sites */
 MKL_INT sitehint; /* Additional information about the structure of
 interpolation sites */

 MKL_INT ndorder, dorder; /* Parameters defining the type of interpolation */

 double* datahint; /* Additional information on partition and interpolation sites */

 double r[NSITE]; /* Array of interpolation results */
 MKL_INT* rhint; /* Additional information on the structure of the results */
 MKL_INT* cell; /* Array of cell indices */

 /* Initialize the partition */
 nx = N;

 /* Set values of partition x */
 ...
 xhint = DF_NON_UNIFORM_PARTITION; /* The partition is non-uniform. */

 /* Initialize the function */
 ny = 1; /* The function is scalar. */

 /* Set function values */
 ...
 yhint = DF_NO_HINT; /* No additional information about the function is provided. */

 /* Create a Data Fitting task */
 status = dfdNewTask1D(&task, nx, x, xhint, ny, y, yhint);

 /* Check the Data Fitting operation status */
 ...

 /* Initialize spline parameters */
 s_order = DF_PP_CUBIC; /* Spline is of the fourth order (cubic spline). */
 s_type = DF_PP_BESSEL; /* Spline is of the Bessel cubic type. */

 /* Define internal conditions for cubic spline construction (none in this example) */
 ic_type = DF_NO_IC;
 ic = NULL;

 /* Use not-a-knot boundary conditions. In this case, the is first and the last
 interior breakpoints are inactive, no additional values are provided. */
 bc_type = DF_BC_NOT_A_KNOT;
 bc = NULL;
 scoeffhint = DF_NO_HINT; /* No additional information about the spline. */

 /* Set spline parameters in the Data Fitting task */
 status = dfdEditPPSpline1D(task, s_order, s_type, bc_type, bc, ic_type,
 ic, scoeff, scoeffhint);

 /* Check the Data Fitting operation status */
 ...

 /* Use a standard method to construct a cubic Bessel spline: */
 /* Pi(x) = c1,i + c2,i(x - xi) + c3,i(x - xi)2 + c4,i(x - xi)3, */
 /* The library packs spline coefficients to array scoeff: */

 Intel® Math Kernel Library

10

 /* scoeff[4*i+0] = c1,i, scoef[4*i+1] = c2,i, */
 /* scoeff[4*i+2] = c3,i, scoef[4*i+1] = c4,i, */
 /* i=0,...,N-2 */
 status = dfdConstruct1D(task, DF_PP_SPLINE, DF_METHOD_STD);

 /* Check the Data Fitting operation status */
 ...

 /* Initialize interpolation parameters */
 nsite = NSITE;

 /* Set site values */
 ...

 sitehint = DF_NON_UNIFORM_PARTITION; /* Partition of sites is non-uniform */

 /* Request to compute spline values */
 ndorder = 1;
 dorder = 1;
 datahint = DF_NO_APRIORI_INFO; /* No additional information about breakpoints or
 sites is provided. */
 rhint = DF_MATRIX_STORAGE_ROWS; /* The library packs interpolation results
 in row-major format. */
 cell = NULL; /* Cell indices are not required. */

 /* Solve interpolation problem using the default method: compute the sline values
 at the points site(i), i=0,..., nsite-1 and place the results to array r */
 status = dfdInterpolate1D(task, DF_INTERP, DF_METHOD_STD, nsite, site,
 sitehint, ndorder, &dorder, datahint, r, rhint, cell);

 /* Check Data Fitting operation status */
 ...

 /* De-allocate Data Fitting task resources */
 status = dfDeleteTask(&task);
 /* Check Data Fitting operation status */
 ...
 return 0;
}
The following C example demonstrates how to compute indices of cells containing given sites. This example
uses uniform partition presented with two boundary points. The sites are in the ascending order.

C Example of Cell Search
#include "mkl.h"

#define NX 100 /* Size of partition, number of breakpoints */
#define NSITE 1000 /* Number of interpolation sites */

int main()
{
 int status; /* Status of a Data Fitting operation */
 DFTaskPtr task; /* Data Fitting operations are task based */

 /* Parameters describing the partition */
 MKL_INT nx; /* The size of partition x */
 double x[2]; /* Partition x is uniform and holds endpoints
 of interpolation interval [a, b] */
 MKL_INT xhint; /* Additional information about the structure of breakpoints */

Data Fitting Functions

11

 /* Parameters describing the function */
 MKL_INT ny; /* Function dimension */
 float *y; /* Function values at the breakpoints */
 MKL_INT yhint; /* Additional information about the function */

 /* Parameters describing cell search */
 MKL_INT nsite; /* Number of interpolation sites */
 double site[NSITE]; /* Array of interpolation sites */
 MKL_INT sitehint; /* Additional information about the structure of sites */

 float* datahint; /* Additional information on partition and interpolation sites */

 MKL_INT cell[NSITE]; /* Array for cell indices */

 /* Initialize a uniform partition */
 nx = N;
 /* Set values of partition x: for uniform partition, */
 /* provide end-points of the interpolation interval [-1.0,1.0] */
 x[0] = -1.0f; x[1] = 1.0f;
 xhint = DF_UNIFORM_PARTITION; /* Partition is uniform */

 /* Initialize function parameters */
 /* In cell search, function values are not necessary and are set to zero/NULL values */
 ny = 0;
 y = NULL;
 yhint = DF_NO_HINT;

 /* Create a Data Fitting task */
 status = dfdNewTask1D(&task, nx, x, xhint, ny, y, yhint);

 /* Check Data Fitting operation status */
 ...

 /* Initialize interpolation (cell search) parameters */
 nsite = NSITE;

 /* Set sites in the ascending order */
 ...
 sitehint = DF_SORTED_DATA; /* Sites are provided in the ascending order. */
 datahint = DF_NO_APRIORI_INFO; /* No additional information
 about breakpoints/sites is provided.*/

 /* Use a standard method to compute indices of the cells that contain
 interpolation sites. The library places the index of the cell containing
 site(i) to the cell(i), i=0,...,nsite-1 */
 status = dfsSearchCells1D(task, DF_METHOD_STD, nsite, site, sitehint,
 datahint, cell);
 /* Check Data Fitting operation status */
 ...

 /* Process cell indices */
 ...

 /* Deallocate Data Fitting task resources */
 status = dfDeleteTask(&task);

 /* Check Data Fitting operation status */
 ...
 return 0;
}

 Intel® Math Kernel Library

12

Task Status and Error Reporting
The Data Fitting routines report a task status through integer values. Negative status values indicate errors,
while positive values indicate warnings. An error can be caused by invalid parameter values or a memory
allocation failure.

The status codes have symbolic names predefined in the respective header files. For the C/C++ interface,
these names are defined as macros via the #define statements. For the Fortran interface, the names are
defined as integer constants via the PARAMETER operators.

If no error occurred, the function returns the DF_STATUS_OK code defined as zero:

C/C++: #define DF_STATUS_OK 0
F90/F95: INTEGER, PARAMETER::DF_STATUS_OK = 0

In case of an error, the function returns a non-zero error code that specifies the origin of the failure. Header
files for both C/C++ and Fortran languages define the following status codes:

Status Codes in the Data Fitting Component

Status Code Description

Common Status Codes

DF_STATUS_OK Operation completed successfully.

DF_ERROR_NULL_TASK Data Fitting task is a NULL pointer.

DF_ERROR_MEM_FAILURE Memory allocation failure.

DF_ERROR_METHOD_NOT_SUPPORTED Requested method is not supported.

DF_ERROR_COMP_TYPE_NOT_SUPPORTED Requested computation type is not supported.

Data Fitting Task Creation and Initialization, and Generic Editing Operations

DF_ERROR_BAD_NX Invalid number of breakpoints.

DF_ERROR_BAD_X Array of breakpoints is invalid.

DF_ERROR_BAD_X_HINT Invalid hint describing the structure of the partition.

DF_ERROR_BAD_NY Invalid dimension of vector-valued function y.

DF_ERROR_BAD_Y Array of function values is invalid.

DF_ERROR_BAD_Y_HINT Invalid flag describing the structure of function y

Data Fitting Task-Specific Editing Operations

DF_ERROR_BAD_SPLINE_ORDER Invalid spline order.

DF_ERROR_BAD_SPLINE_TYPE Invalid spline type.

DF_ERROR_BAD_IC_TYPE Type of internal conditions used for spline
construction is invalid.

DF_ERROR_BAD_IC Array of internal conditions for spline construction is
not defined.

DF_ERROR_BAD_BC_TYPE Type of boundary conditions used in spline
construction is invalid.

DF_ERROR_BAD_BC Array of boundary conditions for spline construction
is not defined.

Data Fitting Functions

13

Status Code Description

DF_ERROR_BAD_PP_COEFF Array of piecewise polynomial spline coefficients is
not defined.

DF_ERROR_BAD_PP_COEFF_HINT Invalid flag describing the structure of the
piecewise polynomial spline coefficients.

DF_ERROR_BAD_PERIODIC_VAL Function values at the endpoints of the
interpolation interval are not equal as required in
periodic boundary conditions.

DF_ERROR_BAD_DATA_ATTR Invalid attribute of the pointer to be set or modified
in Data Fitting task descriptor with the df?
editidxptr task editor.

DF_ERROR_BAD_DATA_IDX Index of the pointer to be set or modified in the
Data Fitting task descriptor with the df?
editidxptr task editor is out of the pre-defined
range.

Data Fitting Computation Operations

DF_ERROR_BAD_NSITE Invalid number of interpolation sites.

DF_ERROR_BAD_SITE Array of interpolation sites is not defined.

DF_ERROR_BAD_SITE_HINT Invalid flag describing the structure of interpolation
sites.

DF_ERROR_BAD_NDORDER Invalid size of the array defining derivative orders
to be computed at interpolation sites.

DF_ERROR_BAD_DORDER Array defining derivative orders to be computed at
interpolation sites is not defined.

DF_ERROR_BAD_DATA_HINT Invalid flag providing additional information about
partition or interpolation sites.

DF_ERROR_BAD_INTERP Array of spline-based interpolation results is not
defined.

DF_ERROR_BAD_INTERP_HINT Invalid flag defining the structure of spline-based
interpolation results.

DF_ERROR_BAD_CELL_IDX Array of indices of partition cells containing
interpolation sites is not defined.

DF_ERROR_BAD_NLIM Invalid size of arrays containing integration limits.

DF_ERROR_BAD_LLIM Array of the left-side integration limits is not
defined.

DF_ERROR_BAD_RLIM Array of the right-side integration limits is not
defined.

DF_ERROR_BAD_INTEGR Array of spline-based integration results is not
defined.

DF_ERROR_BAD_INTEGR_HINT Invalid flag providing the structure of the array of
spline-based integration results.

DF_ERROR_BAD_LOOKUP_INTERP_SITE Bad site provided for interpolation with look-up
interpolator.

 Intel® Math Kernel Library

14

NOTE
The routine that estimates piecewise polynomial cubic spline coefficients can return internal error
codes related to the specifics of the implementation. Such error codes indicate invalid input data or
other issues unrelated to Data Fitting routines.

Task Creation and Initialization Routines
Task creation and initialization routines are functions used to create a new task descriptor and initialize its
parameters. The Data Fitting component provides the df?newtask1d routine that creates and initializes a
new task descriptor for a one-dimensional Data Fitting task.

df?newtask1d
Creates and initializes a new task descriptor for a one-
dimensional Data Fitting task.

Syntax

status = dfsnewtask1d(task, nx, x, xhint, ny, y, yhint)
status = dfdnewtask1d(task, nx, x, xhint, ny, y, yhint)
status = dfsNewTask1D(&task, nx, x, xhint, ny, y, yhint)
status = dfdNewTask1D(&task, nx, x, xhint, ny, y, yhint)

Include Files

• Fortran: mkl_df.f90
• C: mkl.h

Input Parameters

Name Type Description

nx Fortran: INTEGER
C: const MKL_INT

Number of breakpoints representing partition of
interpolation interval [a, b].

x Fortran: REAL(KIND=4)
DIMENSION(*) for
dfsnewtask1d
REAL(KIND=8) DIMENSION(*)
for dfdnewtask1d
C: const float* for
dfsNewTask1D
const double* for
dfdNewTask1D

One-dimensional array containing the sorted breakpoints
from interpolation interval [a, b]. The structure of the array
is defined by parameter xhint:

• If partition is non-uniform or quasi-uniform, the array
should contain nx ordered values.

• If partition is uniform, the array should contain two
entries that represent endpoints of interpolation interval
[a, b].

xhint Fortran: INTEGER
C: const MKL_INT

A flag describing the structure of partition x. For the list of
possible values of xhint, see table "Hint Values for
Partition x". If you set the flag to the DF_NO_HINT value,
the library interprets the partition as non-uniform.

ny Fortran: INTEGER Dimension of vector-valued function y.

Data Fitting Functions

15

Name Type Description

C: const MKL_INT

y Fortran: REAL(KIND=4)
DIMENSION(*) for
dfsnewtask1d
REAL(KIND=8) DIMENSION(*)
for dfdnewtask1d
C: const float* for
dfsNewTask
const double* for dfdNewTask

Vector-valued function y, array of size nx*ny.

The storage format of function values in the array is defined
by the value of flag yhint.

yhint Fortran: INTEGER
C: const MKL_INT

A flag describing the structure of array y. Valid hint values
are listed in table "Hint Values for Vector-Valued Function
y". If you set the flag to the DF_NO_HINT value, the library
assumes that all ny coordinates of the vector-valued
function y are provided and stored in row-major format.

Output Parameters

Name Type Description

task Fortran: TYPE(DF_TASK)
C: DFTaskPtr

Descriptor of the task.

status Fortran: INTEGER
C: int

Status of the routine:

• DF_STATUS_OK if the task is created successfully.
• Non-zero error code if the task creation failed. See "Task

Status and Error Reporting" for error code definitions.

Description

The df?newtask1d routine creates and initializes a new Data Fitting task descriptor with user-specified
parameters for a one-dimensional Data Fitting task. The x and nx parameters representing the partition of
interpolation interval [a, b] are mandatory. If you provide invalid values for these parameters, such as a
NULL pointer x or the number of breakpoints smaller than two, the routine does not create the Data Fitting
task and returns an error code.

If you provide a vector-valued function y, make sure that the function dimension ny and the array of function
values y are both valid. If any of these parameters are invalid, the routine does not create the Data Fitting
task and returns an error code.

If you store coordinates of the vector-valued function y in non-contiguous memory locations, you can set the
yhint flag to DF_1ST_COORDINATE, and pass only the first coordinate of the function into the task creation
routine. After successful creation of the Data Fitting task, you can pass the remaining coordinates using the
df?editidxptr task editor.

If the routine fails to create the task descriptor, it returns a NULL task pointer.

The routine supports the following hint values for partition x:

 Intel® Math Kernel Library

16

Hint Values for Partition x

Value Description

DF_NON_UNIFORM_PARTITION Partition is non-uniform.

DF_QUASI_UNIFORM_PARTITION Partition is quasi-uniform.

DF_UNIFORM_PARTITION Partition is uniform.

DF_NO_HINT No hint is provided. By default, partition is interpreted as non-
uniform.

The routine supports the following hint values for the vector-valued function:

Hint Values for Vector-Valued Function y

Value Description

DF_MATRIX_STORAGE_ROWS Data is stored in row-major format according to C conventions.

DF_MATRIX_STORAGE_COLS Data is stored in column-major format according to Fortran
conventions.

DF_1ST_COORDINATE The first coordinate of vector-valued data is provided.

DF_NO_HINT No hint is provided. By default, the coordinates of vector-valued
function y are provided and stored in row-major format.

NOTE
You must preserve the arrays x (breakpoints) and y (vector-valued functions) through the entire
workflow of the Data Fitting computations for a task, as the task stores the addresses of the arrays for
spline-based computations.

Task Editors
Task editors initialize or change the predefined Data Fitting task parameters. You can use task editors to
initialize or modify pointers to arrays or parameter values.

Task editors can be task-specific and generic. Task-specific editors can modify more than one parameter
related to a specific task. Generic editors modify a single parameter at a time.

The Data Fitting component of the Intel MKL provides the following task editors:

Data Fitting Task Editors

Editor Description Type

df?
editppspline1d

Changes parameters of the piecewise polynomial
spline.

Task-specific

df?editptr Changes a pointer in the task descriptor. Generic

dfieditval Changes a value in the task descriptor. Generic

df?editidxptr Changes a coordinate of data represented in
matrix format. For example, a vector-valued
function or spline coefficients.

Generic

Data Fitting Functions

17

df?editppspline1d
Modifies parameters representing a spline in a Data
Fitting task descriptor.

Syntax

status = dfseditppspline1d(task, s_order, s_type, bc_type, bc, ic_type, ic, scoeff,
scoeffhint)
status = dfdeditppspline1d(task, s_order, s_type, bc_type, bc, ic_type, ic, scoeff,
scoeffhint)
status = dfsEditPPSpline1D(task, s_order, s_type, bc_type, bc, ic_type, ic, scoeff,
scoeffhint)
status = dfdEditPPSpline1D(task, s_order, s_type, bc_type, bc, ic_type, ic, scoeff,
scoeffhint)

Include Files

• Fortran: mkl_df.f90
• C: mkl.h

Input Parameters

Name Type Description

task Fortran: TYPE(DF_TASK)
C: DFTaskPtr

Descriptor of the task.

s_order Fortran: INTEGER
C: const MKL_INT

Spline order. The parameter takes one of the values
described in table "Spline Orders Supported by Data Fitting
Functions".

s_type Fortran: INTEGER
C: const MKL_INT

Spline type. The parameter takes one of the values
described in table "Spline Types Supported by Data Fitting
Functions".

bc_type Fortran: INTEGER
C: const MKL_INT

Type of boundary conditions. The parameter takes one of
the values described in table "Boundary Conditions
Supported by Data Fitting Functions".

bc Fortran: REAL(KIND=4)
DIMENSION(*) for
dfseditppspline1d
REAL(KIND=8) DIMENSION(*)
for dfdeditppspline1d
C: const float* for
dfsEditPPSpline1D
const double* for
dfdEditPPSpline1D

Pointer to boundary conditions. The size of the array is
defined by the value of parameter bc_type:

• If you set free-end or not-a-knot boundary conditions,
pass the NULL pointer to this parameter.

• If you combine boundary conditions at the endpoints of
the interpolation interval, pass an array of two elements.

• If you set a boundary condition for the default quadratic
spline or a periodic condition for Hermite or the default
cubic spline, pass an array of one element.

ic_type Fortran: INTEGER
C: const MKL_INT

Type of internal conditions. The parameter takes one of the
values described in table "Internal Conditions Supported by
Data Fitting Functions".

 Intel® Math Kernel Library

18

Name Type Description

ic Fortran: REAL(KIND=4)
DIMENSION(*) for
dfseditppspline1d
REAL(KIND=8) DIMENSION(*)
for dfdeditppspline1d
C: const float* for
dfsEditPPSpline1D
const double* for
dfdEditPPSpline1D

A non-NULL pointer to the array of internal conditions. The
size of the array is defined by the value of parameter
ic_type:

• If you set first derivatives or second
derivatives internal conditions
(ic_type=DF_IC_1ST_DER or
ic_type=DF_IC_2ND_DER), pass an array of n-1
derivative values at the internal points of the
interpolation interval.

• If you set the knot values internal condition for
Subbotin spline (ic_type=DF_IC_Q_KNOT) and the knot
partition is non-uniform, pass an array of n+1 elements.

• If you set the knot values internal condition for
Subbotin spline (ic_type=DF_IC_Q_KNOT) and the knot
partition is uniform, pass an array of four elements.

scoeff Fortran: REAL(KIND=4)
DIMENSION(*) for
dfseditppspline1d
REAL(KIND=8) DIMENSION(*)
for dfdeditppspline1d
C: const float* for
dfsEditPPSpline1D
const double* for
dfdEditPPSpline1D

Spline coefficients. An array of size s_order*(nx-1). The
storage format of the coefficients in the array is defined by
the value of flag scoeffhint.

scoeffhint Fortran: INTEGER
C: const MKL_INT

A flag describing the structure of the array of spline
coefficients. For valid hint values, see table "Hint Values for
Spline Coefficients". The library stores the coefficients in
row-major format. The default value is DF_NO_HINT.

Output Parameters

Name Type Description

status Fortran: INTEGER
C: int

Status of the routine:

• DF_STATUS_OK if the routine execution completed
successfully.

• Non-zero error code if the routine execution failed. See
"Task Status and Error Reporting" for error code
definitions.

Description

The editor modifies parameters that describe the order, type, boundary conditions, internal conditions, and
coefficients of a spline. The spline order definition is provided in the "Mathematical Conventions" section. You
can set the spline order to any value supported by Data Fitting functions. The table below lists the available
values:

Data Fitting Functions

19

Spline Orders Supported by the Data Fitting Functions

Order Description

DF_PP_STD Artificial value. Use this value for look-up and step-
wise constant interpolants only.

DF_PP_LINEAR Piecewise polynomial spline of the second order
(linear spline).

DF_PP_QUADRATIC Piecewise polynomial spline of the third order
(quadratic spline).

DF_PP_CUBIC Piecewise polynomial spline of the fourth order
(cubic spline).

To perform computations with a spline not supported by Data Fitting routines, set the parameter defining the
spline order and pass the spline coefficients to the library in the supported format. For format description,
see figure "Row-major Coefficient Storage Format".

The table below lists the supported spline types:

Spline Types Supported by Data Fitting Functions

Type Description

DF_PP_DEFAULT The default spline type. You can use this type with
linear, quadratic, or user-defined splines.

DF_PP_SUBBOTIN Quadratic splines based on Subbotin algorithm,
[StechSub76].

DF_PP_NATURAL Natural cubic spline.

DF_PP_HERMITE Hermite cubic spline.

DF_PP_BESSEL Bessel cubic spline.

DF_PP_AKIMA Akima cubic spline.

DF_LOOKUP_INTERPOLANT Look-up interpolant.

DF_CR_STEPWISE_CONST_INTERPOLANT Continuous right step-wise constant interpolant.

DF_CL_STEPWISE_CONST_INTERPOLANT Continuous left step-wise constant interpolant.

If you perform computations with look-up or step-wise constant interpolants, set the spline order to the
DF_PP_STD value.

Construction of specific splines may require boundary or internal conditions. To compute coefficients of such
splines, you should pass boundary or internal conditions to the library by specifying the type of the
conditions and providing the necessary values. For splines that do not require additional conditions, such as
linear splines, set condition types to DF_NO_BC and DF_NO_IC, and pass NULL pointers to the conditions.
The table below defines the supported boundary conditions:

Boundary Conditions Supported by Data Fitting Functions

Boundary Condition Description Spline

DF_NO_BC No boundary conditions provided. All

DF_BC_NOT_A_KNOT Not-a-knot boundary conditions. Akima, Bessel, Hermite, natural
cubic

 Intel® Math Kernel Library

20

Boundary Condition Description Spline

DF_BC_FREE_END Free-end boundary conditions. Akima, Bessel, Hermite, natural
cubic, quadratic Subbotin

DF_BC_1ST_LEFT_DER The first derivative at the left
endpoint.

Akima, Bessel, Hermite, natural
cubic, quadratic Subbotin

DF_BC_1ST_RIGHT_DER The first derivative at the right
endpoint.

Akima, Bessel, Hermite, natural
cubic, quadratic Subbotin

DF_BC_2ST_LEFT_DER The second derivative at the left
endpoint.

Akima, Bessel, Hermite, natural
cubic, quadratic Subbotin

DF_BC_2ND_RIGHT_DER The second derivative at the right
endpoint.

Akima, Bessel, Hermite, natural
cubic, quadratic Subbotin

DF_BC_PERIODIC Periodic boundary conditions. Linear, all cubic splines

DF_BC_Q_VAL Function value at point

(x0 + x1)/2

Default quadratic

NOTE
To construct a natural cubic spline, pass these settings to the editor:

• DF_PP_CUBIC as the spline order,
• DF_PP_NATURAL as the spline type, and
• DF_BC_FREE_END as the boundary condition.

To construct a cubic spline with other boundary conditions, pass these settings to the editor:

• DF_PP_CUBIC as the spline order,
• DF_PP_NATURAL as the spline type, and
• the required type of boundary condition.

For Akima, Hermite, Bessel and default cubic splines use the corresponding type defined in Table
Spline Types Supported by Data Fitting Functions.

You can combine the values of boundary conditions with a bitwise OR operation. This permits you to pass
combinations of first and second derivatives at the endpoints of the interpolation interval into the library. To
pass a first derivative at the left endpoint and a second derivative at the right endpoint, set the boundary
conditions to DF_BC_1ST_LEFT_DER OR DF_BC_2ND_RIGHT_DER.

You should pass the combined boundary conditions as an array of two elements. The first entry of the array
contains the value of the boundary condition for the left endpoint of the interpolation interval, and the
second entry - for the right endpoint. Pass other boundary conditions as arrays of one element.

For the conditions defined as a combination of valid values, the library applies the following rules to identify
the boundary condition type:

• If not required for spline construction, the value of boundary conditions is ignored.
• Not-a-knot condition has the highest priority. If set, other boundary conditions are ignored.
• Free-end condition has the second priority after the not-a-knot condition. If set, other boundary

conditions are ignored.
• Periodic boundary condition has the next priority after the free-end condition.
• The first derivative has higher priority than the second derivative at the right and left endpoints.

Data Fitting Functions

21

If you set the periodic boundary condition, make sure that function values at the endpoints of the
interpolation interval are identical. Otherwise, the library returns an error code. The table below specifies the
values to be provided for each type of spline if the periodic boundary condition is set.

Boundary Requirements for Periodic Conditions

Spline Type Periodic Boundary Condition
Support

Boundary Value

Linear Yes Not required

Default quadratic No

Subbotin quadratic No

Natural cubic Yes Not required

Bessel Yes Not required

Akima Yes Not required

Hermite cubic Yes First derivative

Default cubic Yes Second derivative

Internal conditions supported in the Data Fitting domain that you can use for the ic_type parameter are the
following:

Internal Conditions Supported by Data Fitting Functions

Internal Condition Description Spline

DF_NO_IC No internal conditions provided.

DF_IC_1ST_DER Array of first derivatives of size
n-2, where n is the number of
breakpoints. Derivatives are
applicable to each coordinate of
the vector-valued function.

Hermite cubic

DF_IC_2ND_DER Array of second derivatives of
size n-2, where n is the number
of breakpoints. Derivatives are
applicable to each coordinate of
the vector-valued function.

Default cubic

DF_IC_Q_KNOT Knot array of size n+1, where n
is the number of breakpoints.

Subbotin quadratic

To construct a Subbotin quadratic spline, you have three options to get the array of knots in the library:

• If you do not provide the knots, the library uses the default values of knots t = {ti}, i = 0, ..., n according
to the rule:

t0 = x0, tn = xn-1, ti = (xi + xi-1)/2, i = 1, ..., n - 1.
• If you provide the knots in an array of size n + 1, the knots form a non-uniform partition. Make sure that

the knot values you provide meet the following conditions:

t0 = x0, tn = xn-1, ti∈ (xi-1, xi), i = 1,..., n - 1.
• If you provide the knots in an array of size 4, the knots form a uniform partition

t0 = x0, t1 = l, t2 = r, t3 = xn - 1, where l∈ (x0, x1) and r∈ (xn - 2, xn - 1).

In this case, you need to set the value of the ic_type parameter holding the type of internal conditions
to DF_IC_Q_KNOT OR DF_UNIFORM_PARTITION.

 Intel® Math Kernel Library

22

NOTE
Since the partition is uniform, perform an OR operation with the DF_UNIFORM_PARTITION partition hint
value described in Table Hint Values for Partition x.

For computations based on look-up and step-wise constant interpolants, you can avoid calling the df?
editppspline1d editor and directly call one of the routines for spline-based computation of spline values,
derivatives, or integrals. For example, you can call the df?construct1d routine to construct the required
spline with the given attributes, such as order or type.

The memory location of the spline coefficients is defined by the scoeff parameter. Make sure that the size
of the array is sufficient to hold s_order * (nx-1) values.

The df?editppspline1d routine supports the following hint values for spline coefficients:

Hint Values for Spline Coefficients

Order Description

DF_1ST_COORDINATE The first coordinate of vector-valued data is
provided.

DF_NO_HINT No hint is provided. By default, all sets of spline
coefficients are stored in row-major format.

The coefficients for all coordinates of the vector-valued function are packed in memory one by one in
successive order, from function y1 to function yny.

Within each coordinate, the library stores the coefficients as an array, in row-major format:

c1, 0, c1, 1, ..., c1, k, c2, 0, c2, 1, ..., c2, k, ..., cn-1, 0, cn-1, 1, ..., cn-1, k

Mapping of the coefficients to storage in the scoeff array is described below, where ci,j is the jth coefficient
of the function

.

See Mathematical Conventions for more details on nomenclature and interpolants.

Row-major Coefficient Storage Format

Data Fitting Functions

23

If you store splines corresponding to different coordinates of the vector-valued function at non-contiguous
memory locations, do the following:

1. Set the scoeffhint flag to DF_1ST_COORDINATE and provide the spline for the first coordinate.
2. Pass the spline coefficients for the remaining coordinates into the Data Fitting task using the df?

editidxptr task editor.

Using the df?editppspline1d task editor, you can provide to the Data Fitting task an already constructed
spline that you want to use in computations. To ensure correct interpretation of the memory content, you
should set the following parameters:

• Spline order and type, if appropriate. If the spline is not supported by the library, set the s_type
parameter to DF_PP_DEFAULT.

• Pointer to the array of spline coefficients in row-major format.
• The scoeffhint parameter describing the structure of the array:

• Set the scoeffhint flag to the DF_1ST_COORDINATE value to pass spline coefficients stored at
different memory locations. In this case, you can set the parameters that describe boundary and
internal conditions to zero.

• Use the default value DF_NO_HINT for all other cases.

Before passing an already constructed spline into the library, you should call the dfieditval task editor to
provide the dimension of the spline DF_NY. See table "Parameters Supported by the dfieditval Task
Editor" for details.

After you provide the spline to the Data Fitting task, you can run computations that use this spline.

NOTE
You must preserve the arrays bc (boundary conditions), ic (internal conditions), and scoeff (spline
coefficients) through the entire workflow of the Data Fitting computations for a task, as the task stores
the addresses of the arrays for spline-based computations.

df?editptr
Modifies a pointer to an array held in a Data Fitting
task descriptor.

Syntax

status = dfseditptr(task, ptr_type, ptr)
status = dfdeditptr(task, ptr_type, ptr)
status = dfsEditPtr(task, ptr_type, ptr)
status = dfdEditPtr(task, ptr_type, ptr)

Include Files

• Fortran: mkl_df.f90
• C: mkl.h

Input Parameters

Name Type Description

task Fortran: TYPE(DF_TASK) Descriptor of the task.

 Intel® Math Kernel Library

24

Name Type Description

C: DFTaskPtr

ptr_type Fortran: INTEGER
C: const MKL_INT

The parameter to change. For details, see the Pointer Type
column in table "Pointers Supported by the df?editptr
Task Editor".

ptr Fortran: REAL(KIND=4)
DIMENSION(*) for dfseditptr
REAL(KIND=8) DIMENSION(*)
for dfdeditptr
C: const float* for
dfsEditPtr
const double* for dfdEditPtr

New pointer. For details, see the Purpose column in table
"Pointers Supported by the df?editptr Task Editor".

Output Parameters

Name Type Description

status Fortran: INTEGER
C: int

Status of the routine:

• DF_STATUS_OK if the routine execution completed
successfully.

• Non-zero error code otherwise. See "Task Status and
Error Reporting" for error code definitions.

Description

The df?editptr editor replaces the pointer of type ptr_type stored in a Data Fitting task descriptor with a
new pointer ptr. The table below describes types of pointers supported by the editor:

Pointers Supported by the df?editptr Task Editor

Pointer Type Purpose

DF_X Partition x of the interpolation interval

DF_Y Vector-valued function y

DF_IC Internal conditions for spline construction. For details, see table
"Internal Conditions Supported by Data Fitting Functions".

DF_BC Boundary conditions for spline construction. For details, see table
"Boundary Conditions Supported by Data Fitting Functions".

DF_PP_SCOEFF Spline coefficients

You can use df?editptr to modify different types of pointers including pointers to the vector-valued
function and spline coefficients stored in contiguous memory. Use the df?editidxptr editor if you need to
modify pointers to coordinates of the vector-valued function or spline coefficients stored at non-contiguous
memory locations.

If you modify a partition of the interpolation interval, then you should call the dfieditval task editor with
the corresponding value of DF_XHINT, even if the structure of the partition remains the same.

If you pass a NULL pointer to the df?editptr task editor, the task remains unchanged and the routine
returns an error code. For the predefined error codes, please see "Task Status and Error Reporting".

Data Fitting Functions

25

NOTE
You must preserve the arrays x (breakpoints), y (vector-valued functions), bc (boundary conditions),
ic (internal conditions), and scoeff (spline coefficients) through the entire workflow of the Data
Fitting computations which use those arrays, as the task stores the addresses of the arrays for spline-
based computations.

dfieditval
Modifies a parameter value in a Data Fitting task
descriptor.

Syntax

status = dfieditval(task, val_type, val)
status = dfiEditVal(task, val_type, val)

Include Files

• Fortran: mkl_df.f90
• C: mkl.h

Input Parameters

Name Type Description

task Fortran: TYPE(DF_TASK)
C: DFTaskPtr

Descriptor of the task.

val_type Fortran: INTEGER
C: const MKL_INT

The parameter to change. See table "Parameters Supported
by the dfieditval Task Editor".

val Fortran: INTEGER
C: const MKL_INT

A new parameter value. See table "Parameters Supported
by the dfieditval Task Editor".

Output Parameters

Name Type Description

status Fortran: INTEGER
C: int

Status of the routine:

• DF_STATUS_OK if the routine execution completed
successfully.

• Non-zero error code otherwise. See "Task Status and
Error Reporting" for error code definitions.

Description

The dfieditval task editor replaces the parameter of type val_type stored in a Data Fitting task
descriptor with a new value val. The table below describes valid types of parameter val_type supported by
the editor:

 Intel® Math Kernel Library

26

Parameters Supported by the dfieditval Task Editor

Parameter Purpose

DF_NX Number of breakpoints

DF_XHINT A flag describing the structure of partition. See table "Hint Values
for Partition x" for the list of available values.

DF_NY Dimension of the vector-valued function

DF_YHINT A flag describing the structure of the vector-valued function. See
table "Hint Values for Vector Function y" for the list of available
values.

DF_SPLINE_ORDER Spline order. See table "Spline Orders Supported by Data Fitting
Functions" for the list of available values.

DF_SPLINE_TYPE Spline type. See table "Spline Types Supported by Data Fitting
Functions" for the list of available values.

DF_BC_TYPE Type of boundary conditions used in spline construction. See table
"Boundary Conditions Supported by Data Fitting Functions" for the
list of available values.

DF_IC_TYPE Type of internal conditions used in spline construction. See table
"Internal Conditions Supported by Data Fitting Functions" for the
list of available values.

DF_PP_COEFF_HINT A flag describing the structure of spline coefficients. See table "Hint
Values for Spline Coefficients" for the list of available values.

DF_CHECK_FLAG A flag which controls checking of Data Fitting parameters. See
table "Possible Values for the DF_CHECK_FLAG Parameter" for the
list of available values.

If you pass a zero value for the parameter describing the size of the arrays that hold coefficients for a
partition, a vector-valued function, or a spline, the parameter held in the Data fitting task remains
unchanged and the routine returns an error code. For the predefined error codes, see "Task Status and Error
Reporting".

Possible Values for the DF_CHECK_FLAG Parameter
Value Description

DF_ENABLE_CHECK_FLAG Checks the correctness of parameters of Data
Fitting computational routines (default mode).

DF_DISABLE_CHECK_FLAG Disables checking of the correctness of parameters
of Data Fitting computational routines.

Use DF_CHECK_FLAG for val_type in order to control validation of parameters of Data Fitting computational
routines such as Construct1d, Interpolate1D/InterpolateEx1d, and SearchCells1D/
SearchCellsEx1D, which can perform better with a small number of interpolation sites or integration limits
(fewer than one dozen). The default mode, with checking of parameters enabled, should be used as you
develop a Data Fitting-based application. After you complete development you can disable parameter
checking in order to improve the performance of your application.

If you modify the parameter describing dimensions of the arrays that hold the vector-valued function or
spline coefficients in contiguous memory, you should call the df?editptr task editor with the corresponding
pointers to the vector-valued function or spline coefficients even when this pointer remains unchanged. Call
the df?editidxptr editor if those arrays are stored in non-contiguous memory locations.

Data Fitting Functions

27

You must call the dfieditval task editor to edit the structure of the partition DF_XHINT every time you
modify a partition using df?editptr, even if the structure of the partition remains the same.

df?editidxptr
Modifies a pointer to the memory representing a
coordinate of the data stored in matrix format.

Syntax

status = dfseditidxptr(task, type, idx, ptr)
status = dfdeditidxptr(task, type, idx, ptr)
status = dfsEditIdxPtr(task, type, idx, ptr)
status = dfdEditIdxPtr(task, type, idx, ptr)

Include Files

• Fortran: mkl_df.f90
• C: mkl.h

Input Parameters

Name Type Description

task Fortran: TYPE(DF_TASK)
C: DFTaskPtr

Descriptor of the task.

type Fortran: INTEGER
C: const MKL_INT

Type of the data to be modified. The parameter takes one
of the values described in "Data Attributes Supported by
the df?editidxptr Task Editor".

idx Fortran: INTEGER
C: const MKL_INT

Index of the coordinate whose pointer is to be modified.

ptr Fortran: REAL(KIND=4)
DIMENSION(*) for
dfseditidxptr
REAL(KIND=8) DIMENSION(*)
for dfdeditidxptr
C: const float* for
dfsEditIdxPtr
const double* for
dfdEditIdxPtr

Pointer to the data that holds values of coordinate idx. For
details, see table "Data Attributes Supported by the df?
editidxptr Task Editor".

Output Parameters

Name Type Description

status Fortran: INTEGER
C: int

Status of the routine:

• DF_STATUS_OK if the routine execution completed
successfully.

 Intel® Math Kernel Library

28

Name Type Description

• Non-zero error code otherwise. See "Task Status and
Error Reporting" for error code definitions.

Description

The routine modifies a pointer to the array that holds the idx coordinate of vector-valued function y or the
pointer to the array of spline coefficients corresponding to the given coordinate.

You can use the editor if you need to pass into a Data Fitting task or modify the pointer to coordinates of the
vector-valued function or spline coefficients held at non-contiguous memory locations.

Before calling this editor, make sure that you have created and initialized the task using a task creation
function or a relevant editor such as the generic or specific df?editppspline1d editor.

Data Attributes Supported by the df?editidxptr Task Editor

Data Attribute Description

DF_Y Vector-valued function y

DF_PP_SCOEFF Piecewise polynomial spline coefficients

When using df?editidxptr, you might receive an error code in the following cases:

• You passed an unsupported parameter value into the editor.
• The value of the index exceeds the predefined value that equals the dimension ny of the vector-valued

function.
• You pass a NULL pointer to the editor. In this case, the task remains unchanged.

The code example below demonstrates how to use the editor for providing values of a vector-valued function
stored in two non-contiguous arrays:

#define NX 1000 /* number of break points */
#define NY 2 /* dimension of vector-valued function */
int main()
{
 DFTaskPtr task;
 double x[NX];
 double y1[NX], y2[NX]; /* vector-valued function is stored as two arrays */
 /* Provide first coordinate of two-dimensional function y into creation routine */
 status = dfdNewTask1D(&task, NX, x, DF_NON_UNIFORM_PARTITION, NY, y1,
 DF_1ST_COORDINATE);
 /* Provide second coordiante of two–dimensional function */
 status = dfdEditIdxPtr(task, DF_Y, 1, y2);
 ...
}

Computational Routines
Data Fitting computational routines are functions used to perform spline-based computations, such as:

• spline construction
• computation of values, derivatives, and integrals of the predefined order
• cell search

Once you create a Data Fitting task and initialize the required parameters, you can call computational
routines as many times as necessary.

The table below lists the available computational routines:

Data Fitting Functions

29

Data Fitting Computational Routines

Routine Description

df?construct1d Constructs a spline for a one-dimensional Data
Fitting task.

df?interpolate1d Computes spline values and derivatives.

df?interpolateex1d Computes spline values and derivatives by calling
user-provided interpolants.

df?integrate1d Computes spline-based integrals.

df?integrateex1d Computes spline-based integrals by calling user-
provided integrators.

df?searchcells1d Finds indices of cells containing interpolation sites.

df?searchcellsex1d Finds indices of cells containing interpolation sites
by calling user-provided cell searchers.

If a Data Fitting computation completes successfully, the computational routines return the DF_STATUS_OK
code. If an error occurs, the routines return an error code specifying the origin of the failure. Some possible
errors are the following:

• The task pointer is NULL.
• Memory allocation failed.
• The computation failed for another reason.

For the list of available status codes, see "Task Status and Error Reporting".

NOTE
Data Fitting computational routines do not control errors for floating-point conditions, such as
overflow, gradual underflow, or operations with Not a Number (NaN) values.

df?construct1d
Constructs a spline of the given type.

Syntax

status = dfsconstruct1d(task, s_format, method)
status = dfdconstruct1d(task, s_format, method)
status = dfsConstruct1D(task, s_format, method)
status = dfdConstruct1D(task, s_format, method)

Include Files

• Fortran: mkl_df.f90
• C: mkl.h

Input Parameters

Name Type Description

task Fortran: TYPE(DF_TASK)
C: DFTaskPtr

Descriptor of the task.

 Intel® Math Kernel Library

30

Name Type Description

s_format Fortran: INTEGER
C: const MKL_INT

Spline format. The supported value is DF_PP_SPLINE.

method Fortran: INTEGER
C: const MKL_INT

Construction method. The supported value is
DF_METHOD_STD.

Output Parameters

Name Type Description

status Fortran: INTEGER
C: int

Status of the routine:

• DF_STATUS_OK if the routine execution completed
successfully.

• Non-zero error code if the routine execution failed. See "Task
Status and Error Reporting" for error code definitions.

Description

Before calling df?construct1d, you need to create and initialize the task, and set the parameters
representing the spline. Then you can call the df?construct1d routine to construct the spline. The format of
the spline is defined by parameter s_format. The method for spline construction is defined by parameter
method. Upon successful construction, the spline coefficients are available in the user-provided memory
location in the format you set through the Data Fitting editor. For the available storage formats, see table
"Hint Values for Spline Coefficients".

df?interpolate1d/df?interpolateex1d
Runs data fitting computations.

Syntax

status = dfsinterpolate1d(task, type, method, nsite, site, sitehint, ndorder, dorder,
datahint, r, rhint, cell)
status = dfdinterpolate1d(task, type, method, nsite, site, sitehint, ndorder, dorder,
datahint, r, rhint, cell)
status = dfsinterpolateex1d(task, type, method, nsite, site, sitehint, ndorder,
dorder, datahint, r, rhint, cell, le_cb, le_params, re_cb, re_params, i_cb, i_params,
search_cb, search_params)
status = dfdinterpolateex1d(task, type, method, nsite, site, sitehint, ndorder,
dorder, datahint, r, rhint, cell, le_cb, le_params, re_cb, re_params, i_cb, i_params,
search_cb, search_params)
status = dfsInterpolate1D(task, type, method, nsite, site, sitehint, ndorder, dorder,
datahint, r, rhint, cell)
status = dfdInterpolate1D(task, type, method, nsite, site, sitehint, ndorder, dorder,
datahint, r, rhint, cell)
status = dfsInterpolateEx1D(task, type, method, nsite, site, sitehint, ndorder,
dorder, datahint, r, rhint, cell, le_cb, le_params, re_cb, re_params, i_cb, i_params,
search_cb, search_params)

Data Fitting Functions

31

status = dfdInterpolateEx1D(task, type, method, nsite, site, sitehint, ndorder,
dorder, datahint, r, rhint, cell, le_cb, le_params, re_cb, re_params, i_cb, i_params,
search_cb, search_params)

Include Files

• Fortran: mkl_df.f90
• C: mkl.h

Input Parameters

Name Type Description

task Fortran: TYPE(DF_TASK)
C: DFTaskPtr

Descriptor of the task.

type Fortran: INTEGER
C: const MKL_INT

Type of spline-based computations. The parameter takes
one or more values combined with an OR operation. For the
list of possible values, see table "Computation Types
Supported by the df?interpolate1d/ df?interpolate1d
Routines".

method Fortran: INTEGER
C: const MKL_INT

Computation method. The supported value is
DF_METHOD_PP.

nsite Fortran: INTEGER
C: const MKL_INT

Number of interpolation sites.

site Fortran: REAL(KIND=4)
DIMENSION(*) for
dfsinterpolate1d/
dfsinterpolateex1d
REAL(KIND=8)
DIMENSION(*) for
dfdinterpolate1d/
dfdinterpolateex1d
C: const float* for
dfsInterpolate1D/
dfsInterpolateEx1D
const double* for
dfdInterpolate1D/
dfdInterpolateEx1D

Array of interpolation sites of size nsite. The structure of
the array is defined by the sitehint parameter:

• If sites form a non-uniform partition, the array should
contain nsite values.

• If sites form a uniform partition, the array should
contain two entries that represent the left and the right
interpolation sites. The first entry of the array contains
the left-most interpolation point. The second entry of the
array contains the right-most interpolation point.

sitehint Fortran: INTEGER
C: const MKL_INT

A flag describing the structure of the interpolation sites. For
the list of possible values of sitehint, see table "Hint
Values for Interpolation Sites". If you set the flag to
DF_NO_HINT, the library interprets the site-defined partition
as non-uniform.

ndorder Fortran: INTEGER
C: const MKL_INT

Maximal derivative order increased by one to be computed
at interpolation sites.

 Intel® Math Kernel Library

32

Name Type Description

dorder Fortran: INTEGER
DIMENSION(*)
C: const MKL_INT*

Array of size ndorder that defines the order of the
derivatives to be computed at the interpolation sites. If all
the elements in dorder are zero, the library computes the
spline values only. If you do not need interpolation
computations, set ndorder to zero and pass a NULL pointer
to dorder.

datahint Fortran: REAL(KIND=4)
DIMENSION(*) for
dfsinterpolate1d/
dfsinterpolateex1d
REAL(KIND=8)
DIMENSION(*) for
dfdinterpolate1d/
dfdinterpolateex1d
C: const float* for
dfsInterpolate1D/
dfsInterpolateEx1D
const double* for
dfdInterpolate1D/
dfdInterpolateEx1D

Array that contains additional information about the
structure of partition x and interpolation sites. This data
helps to speed up the computation. If you provide a NULL
pointer, the routine uses the default settings for
computations. For details on the datahint array, see table
"Structure of the datahint Array".

r Fortran: REAL(KIND=4)
DIMENSION(*) for
dfsinterpolate1d/
dfsinterpolateex1d
REAL(KIND=8)
DIMENSION(*) for
dfdinterpolate1d/
dfdinterpolateex1d
C: float* for
dfsInterpolate1D/
dfsInterpolateEx1D
double* for
dfdInterpolate1D/
dfdInterpolateEx1D

Array that contains results of computations at the
interpolation sites. If you do not need spline-based
interpolation or integration, set this pointer to NULL.

rhint Fortran: INTEGER
C: const MKL_INT

A flag describing the structure of the results. For the list of
possible values of rhint, see table "Hint Values for the
rhint Parameter". If you set the flag to DF_NO_HINT, the
library stores the result in row-major format.

cell Fortran: INTEGER
DIMENSION(*)
C: MKL_INT*

Array of cell indices in partition x that contain the
interpolation sites. If you do not need cell indices, set this
parameter to NULL.

le_cb Fortran: INTEGER User-defined callback function for extrapolation at the sites
to the left of the interpolation interval.

Set to NULL if you are not supplying a callback function.

Data Fitting Functions

33

Name Type Description

C:
constdfsInterpCallBack
for dfsInterpolateEx1D
constdfdInterpCallBack
for dfdInterpolateEx1D

le_params Fortran: INTEGER
DIMENSION(*)
C: const void*

Pointer to additional user-defined parameters passed by the
library to the le_cb function.

Set to NULL if there are no additional parameters or if you
are not supplying a callback function.

re_cb Fortran: INTEGER
C:
constdfsInterpCallBack
for dfsInterpolateEx1D
constdfdInterpCallBack
for dfdInterpolateEx1D

User-defined callback function for extrapolation at the sites
to the right of the interpolation interval.

Set to NULL if you are not supplying a callback function.

re_params Fortran: INTEGER
DIMENSION(*)
C: const void*

Pointer to additional user-defined parameters passed by the
library to the re_cb function.

Set to NULL if there are no additional parameters or if you
are not supplying a callback function.

i_cb Fortran: INTEGER
C:
constdfsInterpCallBack
for dfsInterpolateEx1D
constdfdInterpCallBack
for dfdInterpolateEx1D

User-defined callback function for interpolation within the
interpolation interval.

Set to NULL if you are not supplying a callback function.

i_params Fortran: INTEGER
DIMENSION(*)
C: const void*

Pointer to additional user-defined parameters passed by the
library to the i_cb function.

Set to NULL if there are no additional parameters or if you
are not supplying a callback function.

search_cb Fortran: INTEGER
C:
constdfsSearchCellsCal
lBack for
dfsInterpolateEx1D
constdfdSearchCellsCal
lBack for
dfdInterpolateEx1D

User-defined callback function for computing indices of cells
that can contain interpolation sites.

Set to NULL if you are not supplying a callback function.

search_params Fortran: INTEGER
DIMENSION(*)
C: const void*

Pointer to additional user-defined parameters passed by the
library to the search_cb function.

Set to NULL if there are no additional parameters or if you
are not supplying a callback function.

 Intel® Math Kernel Library

34

Output Parameters

Name Type Description

status Fortran: INTEGER
C: int

Status of the routine:

• DF_STATUS_OK if the routine execution completed
successfully.

• Non-zero error code if the routine execution failed. See
"Task Status and Error Reporting" for error code
definitions.

Description

The df?interpolate1d/df?interpolateex1d routine performs spline-based computations with user-
defined settings. The routine supports two types of computations for interpolation sites provided in array
site:

Computation Types Supported by the df?interpolate1d/df?interpolateex1d Routines

Type Description

DF_INTERP Compute derivatives of predefined order. The
derivative of the zero order is the spline value.

DF_CELL Compute indices of cells in partition x that contain
the sites.

If the sites do not belong to interpolation interval [a, b] , the library uses:

• polynomial P0 of the spline constructed on interval [x0, x1] for computations at the sites to the left of a.
• polynomial Pn-2 of the spline constructed on interval [xn-2, xn-1] for computations at the sites to the right

of b.

Interpolation sites support the following hints:

Hint Values for Interpolation Sites

Value Description

DF_NON_UNIFORM_PARTITION Partition is non-uniform.

DF_UNIFORM_PARTITION Partition is uniform.

DF_SORTED_DATA Interpolation sites are sorted in the ascending order and define
a non-uniform partition.

DF_NO_HINT No hint is provided. By default, the partition defined by
interpolation sites is interpreted as non-uniform.

NOTE
If you pass a sorted array of interpolation sites to the Intel MKL, set the sitehint parameter to the
DF_SORTED_DATA value. The library uses this information when choosing the search algorithm and
ignores any other data hints about the structure of the interpolation sites.

Data Fitting computation routines can use the following hints to speed up the computation:

• DF_UNIFORM_PARTITION describes the structure of breakpoints and the interpolation sites.
• DF_QUASI_UNIFORM_PARTITION describes the structure of breakpoints.

Pass the above hints to the library when appropriate.

Data Fitting Functions

35

The r pointer defines the memory location for the sets of interpolation and integration results for all
coordinates of function y. The sets are stored one by one, in the successive order of the function coordinates
from y1 to yny.

You can define the following settings for packing the results within each set:

• Computation type: interpolation, integration, or both.
• Computation parameters: derivative orders.
• Storage format for the results. You can specify the format using the rhint parameter values described in

the table below:

Hint Values for the rhint Parameter

Value Description

DF_MATRIX_STORAGE_ROWS Data is stored in row-major format according to C conventions.

DF_MATRIX_STORAGE_COLS Data is stored in column-major format according to Fortran
conventions.

DF_NO_HINT No hint is provided. By default, the results are stored in row-
major format.

For spline-based interpolation, you should set the derivatives whose values are required for the computation.
You can provide the derivatives by setting the dorder array of size ndorder as follows:

See below a common structure of the storage formats of the interpolation results within each set r for
computing derivatives of order i1, i2,...,im at nsite interpolation sites. In this description, j is the coordinate
of the vector-valued function:

• Row-major format

rj(i1, 0) rj(i2, 0) ... rj(im, 0)

rj(i1, 1) rj(i2, 1) ... rj(im, 1)

...

rj(i1, nsite - 1) rj(i2, nsite - 1) ... rj(im, nsite - 1)

• Column-major format

rj(i1, 0) rj(i1, 1) ... rj(i1, nsite - 1)

rj(i2, 0) rj(i2, 1) ... rj(i2, nsite - 1)

...

rj(im, 0) rj(im, 1) ... rj(im, nsite - 1)

To speed up Data Fitting computations, use the datahint parameter that provides additional information
about the structure of the partition and interpolation sites. This data represents a floating-point or a double
array with the following structure:

Structure of the datahint Array

Element Number Description

0 Task dimension

 Intel® Math Kernel Library

36

Element Number Description

1 Type of additional information

2 Reserved field

3 The total number q of elements containing additional information.

4 Element (1)

... ...

q+3 Element (q)

Data Fitting computation functions support the following types of additional information for datahint[1]:

Types of Additional Information

Type Element Number Parameter

DF_NO_APRIORI_INFO 0 No parameters are provided.
Information about the data
structure is absent.

DF_APRIORI_MOST_LIKELY_CELL 1 Index of the cell that is likely to
contain interpolation sites.

To compute indices of the cells that contain interpolation sites, provide the pointer to the array of size nsite
for the results. The library supports the following scheme of cell indexing for the given partition{xi},
i=1,...,nx:

cell[j] = i, if site[j] ∈[xi, xi+1), i = 0,..., nx,

where

• x0 = -∞
• xnx+1 = +∞
• j = 0,..., nsite-1

To perform interpolation computations with spline types unsupported in the Data Fitting component, use the
extended version of the routine df?interpolateex1d. With this routine, you can provide user-defined
callback functions for computations within, to the left of, or to the right of interpolaton interval [a, b]. The
callback functions compute indices of the cells that contain the specified interpolation sites or can serve as an
approximation for computing the exact indices of such cells.

If you do not pass any function for computations at the sites outside the interval [a, b], the routine uses the
default settings.

See Also
df?interpcallback
df?searchcellscallback

df?integrate1d/df?integrateex1d
Computes a spline-based integral.

Syntax

status = dfsintegrate1d(task, method, nlim, llim, llimhint, rlim, rlimhint, ldatahint,
rdatahint, r, rhint)
status = dfdintegrate1d(task, method, nlim, llim, llimhint, rlim, rlimhint, ldatahint,
rdatahint, r, rhint)

Data Fitting Functions

37

status = dfsintegrateex1d(task, method, nlim, llim, llimhint, rlim, rlimhint,
ldatahint, rdatahint, r, rhint, le_cb, le_params, re_cb, re_params, i_cb, i_params,
search_cb, search_params)
status = dfdintegrateex1d(task, method, nlim, llim, llimhint, rlim, rlimhint,
ldatahint, rdatahint, r, rhint, le_cb, le_params, re_cb, re_params, i_cb, i_params,
search_cb, search_params)
status = dfsIntegrate1D(task, method, nlim, llim, llimhint, rlim, rlimhint, ldatahint,
rdatahint, r, rhint)
status = dfdIntegrate1D(task, method, nlim, llim, llimhint, rlim, rlimhint, ldatahint,
rdatahint, r, rhint)
status = dfsIntegrateEx1D(task, method, nlim, llim, llimhint, rlim, rlimhint,
ldatahint, rdatahint, r, rhint, le_cb, le_params, re_cb, re_params, i_cb, i_params,
search_cb, search_params)
status = dfdIntegrateEx1D(task, method, nlim, llim, llimhint, rlim, rlimhint,
ldatahint, rdatahint, r, rhint, le_cb, le_params, re_cb, re_params, i_cb, i_params,
search_cb, search_params)

Include Files

• Fortran: mkl_df.f90
• C: mkl.h

Input Parameters

Name Type Description

task Fortran: TYPE(DF_TASK)
C: DFTaskPtr

Descriptor of the task.

method Fortran: INTEGER
C: const MKL_INT

Integration method. The supported value is DF_METHOD_PP.

nlim Fortran: INTEGER
C: const MKL_INT

Number of pairs of integraion limits.

llim Fortran: REAL(KIND=4)
DIMENSION(*) for
dfsintegrate1d/
dfsintegrateex1d
REAL(KIND=8)
DIMENSION(*) for
dfdintegrate1d/
dfdintegrateex1d
C: const float* for
dfsIntegrate1D/
dfsIntegrateEx1D
const double* for
dfdIntegrate1D/
dfdIntegrateEx1D

Array of size nlim that defines the left-side integration
limits.

 Intel® Math Kernel Library

38

Name Type Description

llimhint Fortran: INTEGER
C: const MKL_INT

A flag describing the structure of the left-side integration
limits llim. For the list of possible values of llimhint, see
table "Hint Values for Integration Limits". If you set the flag
to the DF_NO_HINT value, the library assumes that the left-
side integration limits define a non-uniform partition.

rlim Fortran: REAL(KIND=4)
DIMENSION(*) for
dfsintegrate1d/
dfsintegrateex1d
REAL(KIND=8)
DIMENSION(*) for
dfdintegrate1d/
dfdintegrateex1d
C: const float* for
dfsIntegrate1D/
dfsIntegrateEx1D
const double* for
dfdIntegrate1D/
dfdIntegrateEx1D

Array of size nlim that defines the right-side integration
limits.

rlimhint Fortran: INTEGER
C: const MKL_INT

A flag describing the structure of the right-side integration
limits rlim. For the list of possible values of rlimhint, see
table "Hint Values for Integration Limits". If you set the flag
to the DF_NO_HINT value, the library assumes that the
right-side integration limits define a non-uniform partition.

ldatahint Fortran: REAL(KIND=4)
DIMENSION(*) for
dfsintegrate1d/
dfsintegrateex1d
REAL(KIND=8)
DIMENSION(*) for
dfdintegrate1d/
dfdintegrateex1d
C: const float* for
dfsIntegrate1D/
dfsIntegrateEx1D
const double* for
dfdIntegrate1D/
dfdIntegrateEx1D

Array that contains additional information about the
structure of partition x and left-side integration limits. For
details on the ldatahint array, see table "Structure of the
datahint Array" in the description of the df?
Intepolate1D function.

rdatahint Fortran: REAL(KIND=4)
DIMENSION(*) for
dfsintegrate1d/
dfsintegrateex1d

Array that contains additional information about the
structure of partition x and right-side integration limits. For
details on the rdatahint array, see table "Structure of the
datahint Array" in the description of the df?
Intepolate1D function.

Data Fitting Functions

39

Name Type Description

REAL(KIND=8)
DIMENSION(*) for
dfdintegrate1d/
dfdintegrateex1d
C: const float* for
dfsIntegrate1D/
dfsIntegrateEx1D
const double* for
dfdIntegrate1D/
dfdIntegrateEx1D

r Fortran: REAL(KIND=4)
DIMENSION(*) for
dfsintegrate1d/
dfsintegrateex1d
REAL(KIND=8)
DIMENSION(*) for
dfdintegrate1d/
dfdintegrateex1d
C: float* for
dfsIntegrate1D/
dfsIntegrateEx1D
double* for
dfdIntegrate1D/
dfdIntegrateEx1D

Array of integration results. The size of the array should
be sufficient to hold nlim*ny values, where ny is the
dimension of the vector-valued function. The integration
results are packed according to the settings in rhint.

rhint Fortran: INTEGER
C: const MKL_INT

A flag describing the structure of the results. For the list of
possible values of rhint, see table "Hint Values for
Integration Results". If you set the flag to the DF_NO_HINT
value, the library stores the results in row-major format.

le_cb Fortran: INTEGER
C:
constdfsIntegrCallBack
for dfsIntegrateEx1D
constdfdIntegrCallBack
for dfdIntegrateEx1D

User-defined callback function for integration on interval
[llim[i], min(rlim[i], a)) for llim[i] < a .

Set to NULL if you are not supplying a callback function.

le_params Fortran: INTEGER
DIMENSION(*)
C: const void*

Pointer to additional user-defined parameters passed by the
library to the le_cb function.

Set to NULL if there are no additional parameters or if you
are not supplying a callback function.

re_cb Fortran: INTEGER
C:
constdfsInterpCallBack
for dfsIntegrateEx1D

User-defined callback function for integration on interval
[max(llim[i], b), rlim[i]) for rlim[i] ≥b.

Set to NULL if you are not supplying a callback function.

 Intel® Math Kernel Library

40

Name Type Description

constdfdInterpCallBack
for dfdIntegrateEx1D

re_params Fortran: INTEGER
DIMENSION(*)
C: const void*

Pointer to additional user-defined parameters passed by the
library to the re_cb function.

Set to NULL if there are no additional parameters or if you
are not supplying a callback function.

i_cb Fortran: INTEGER
C:
constdfsIntegrCallBack
for dfsIntegrateEx1D
constdfdIntegrCallBack
for dfdIntegrateEx1D

User-defined callback function for integration on interval
[max(a, llim[i],), min(rlim[i], b)).

Set to NULL if you are not supplying a callback function.

i_params Fortran: INTEGER
DIMENSION(*)
C: const void*

Pointer to additional user-defined parameters passed by the
library to the i_cb function.

Set to NULL if there are no additional parameters or if you
are not supplying a callback function.

search_cb Fortran: INTEGER
C:
constdfsSearchCellsCal
lBack for
dfsIntegrateEx1D
constdfdSearchCellsCal
lBack for
dfdIntegrateEx1D

User-defined callback function for computing indices of cells
that can contain interpolation sites.

Set to NULL if you are not supplying a callback function.

search_params Fortran: INTEGER
DIMENSION(*)
C: const void*

Pointer to additional user-defined parameters passed by the
library to the search_cb function.

Set to NULL if there are no additional parameters or if you
are not supplying a callback function.

Output Parameters

Name Type Description

status Fortran: INTEGER
C: int

Status of the routine:

• DF_STATUS_OK if the routine execution completed
successfully.

• Non-zero error code if the routine execution failed. See
"Task Status and Error Reporting" for error code
definitions.

Description

The df?integrate1d/df?integrateex1d routine computes spline-based integral on user-defined intervals

Data Fitting Functions

41

If rlim[i] < llim[i], the routine returns

The routine supports the following hint values for integration results:

Hint Values for Integration Results

Value Description

DF_MATRIX_STORAGE_ROWS Data is stored in row-major format according to C conventions.

DF_MATRIX_STORAGE_COLS Data is stored in column-major format according to Fortran
conventions.

DF_NO_HINT No hint is provided. By default, the coordinates of vector-valued
function y are provided and stored in row-major format.

A common structure of the storage formats for the integration results is as follows:

• Row-major format

I(0, 0) ... I(0, nlim - 1])

...

I (ny - 1, 0) ... I(ny - 1, nlim - 1])

• Column-major format

I(0, 0) ... I (ny - 1, 0)

...

I(0, nlim - 1]) ... I(ny - 1, nlim - 1])

Using the llimhint and rlimhint parameters, you can provide the following hint values for integration
limits:

Hint Values for Integration Limits

Value Description

DF_SORTED_DATA Integration limits are sorted in the ascending order and define a
non-uniform partition.

DF_NON_UNIFORM_PARTITION Partition defined by integration limits is non-uniform.

DF_UNIFORM_PARTITION Partition defined by integration limits is uniform.

DF_NO_HINT No hint is provided. By default, partition defined by integration
limits is interpreted as non-uniform.

To compute integration with splines unsupported in the Data Fitting component, use the extended version of
the routine df?integrateex1d. With this routine, you can provide user-defined callback functions that
compute:

 Intel® Math Kernel Library

42

• integrals within, to the left of, or to the right of the interpolation interval [a, b]
• indices of cells that contain the provided integration limits or can serve as an approximation for computing

the exact indices of such cells

If you do not pass callback functions, the routine uses the default settings.

See Also
df?interpolate1d/df?interpolateex1d
df?integrcallback
df?searchcellscallback

df?searchcells1d/df?searchcellsex1d
Searches sub-intervals containing interpolation sites.

Syntax

status = dfssearchcells1d(task, method, nsite, site, sitehint, datahint, cell)
status = dfdsearchcells1d(task, method, nsite, site, sitehint, datahint, cell)
status = dfssearchcellsex1d(task, method, nsite, site, sitehint, datahint, cell,
search_cb, search_params)
status = dfdsearchcellsex1d(task, method, nsite, site, sitehint, datahint, cell,
search_cb, search_params)
status = dfsSearchCells1D(task, method, nsite, site, sitehint, datahint, cell)
status = dfdSearchCells1D(task, method, nsite, site, sitehint, datahint, cell)
status = dfsSearchCellsEx1D(task, method, nsite, site, sitehint, datahint, cell,
search_cb, search_params)
status = dfdSearchCellsEx1D(task, method, nsite, site, sitehint, datahint, cell,
search_cb, search_params)

Include Files

• Fortran: mkl_df.f90
• C: mkl.h

Input Parameters

Name Type Description

task Fortran: TYPE(DF_TASK)
C: DFTaskPtr

Descriptor of the task.

method Fortran: INTEGER
C: const MKL_INT

Search method. The supported value is DF_METHOD_STD.

nsite Fortran: INTEGER
C: const MKL_INT*

Number of interpolation sites.

site Fortran: REAL(KIND=4)
DIMENSION(*) for
dfssearchcells1d/
dfssearchcellsex1d

Array of interpolation sites of size nsite. The structure of
the array is defined by the sitehint parameter:

• If the sites form a non-uniform partition, the array
should contain nsite values.

Data Fitting Functions

43

Name Type Description

REAL(KIND=8) DIMENSION(*)
for dfdsearchcells1d/
dfdsearchcellsex1d
C: const float* for
dfsSearchCells1D/
dfsSearchCellsEx1D
const double* for
dfdSearchCells1D/
dfdSearchCellsEx1D

• If the sites form a uniform partition, the array should
contain two entries that represent the left-most and the
right-most interpolation sites. The first entry of the array
contains the left-most interpolation point. The second
entry of the array contains the right-most interpolation
point.

sitehint Fortran: INTEGER
C: const MKL_INT

A flag describing the structure of the interpolation sites. For
the list of possible values of sitehint, see table "Hint
Values for Interpolation Sites". If you set the flag to
DF_NO_HINT, the library interprets the site-defined partition
as non-uniform.

datahint Fortran: REAL(KIND=4)
DIMENSION(*) for
dfssearchcells1d/
dfssearchcellsex1d
REAL(KIND=8) DIMENSION(*)
for dfdsearchcells1d/
dfdsearchcellsex1d
C: const float* for
dfsSearchCells1D/
dfsSearchCellsEx1D
const double* for
dfdSearchCells1D/
dfdSearchCellsEx1D

Array that contains additional information about the
structure of partition x and interpolation sites. This data
helps to speed up the computation. If you provide a NULL
pointer, the routine uses the default settings for
computations. For details on the datahint array, see table
"Structure of the datahint Array".

cell Fortran: INTEGER
DIMENSION(*)
C: MKL_INT*

Array of cell indices in partition x that contain the
interpolation sites.

search_cb Fortran: INTEGER
C:
constdfsSearchCellsCallBac
k for dfsSearchCellsEx1D
constdfdSearchCellsCallBac
k for dfdSearchCellsEx1D

User-defined callback function for computing indices of cells
that can contain interpolation sites.

Set to NULL if you are not supplying a callback function.

search_pa
rams

Fortran: INTEGER
DIMENSION(*)
C: const void*

Pointer to additional user-defined parameters passed by the
library to the search_cb function.

Set to NULL if there are no additional parameters or if you
are not supplying a callback function.

 Intel® Math Kernel Library

44

Output Parameters

Name Type Description

status Fortran: INTEGER
C: int

Status of the routine:

• DF_STATUS_OK if the routine execution completed
successfully.

• Non-zero error code if the routine execution failed. See
"Task Status and Error Reporting" for error code
definitions.

Description

The df?searchcells1d/df?searchcellsex1d routines return array cell of indices of sub-intervals (cells)
in partition x that contain interpolation sites available in array site. For details on the cell indexing scheme,
see the description of the df?interpolate1d/df?interpolateex1d computation routines.

Use the datahint parameter to provide additional information about the structure of the partition and/or
interpolation sites. The definition of the datahint parameter is availalbe in the description of the df?
interpolate1d/df?interpolateex1d computation routines.

For description of the user-defined callback for computation of cell indices, see df?searchcellscallback.

See Also
df?interpolate1d/df?interpolateex1d
df?searchcellscallback

df?interpcallback
A callback function for user-defined interpolation to be
passed into df?interpolateex1d.

Syntax

status = dfsinterpcallback(n, cell, site, r, params)
status = dfdinterpcallback(n, cell, site, r, params)
status = dfsInterpCallBack(n, cell, site, r, params)
status = dfdInterpCallBack(n, cell, site, r, params)

Include Files

• Fortran: mkl_df.f90
• C: mkl.h

Input Parameters

Name Type Description

n Fortran: INTEGER(KIND=8)
C: long long*

Number of interpolation sites.

cell Fortran: INTEGER(KIND=8)
DIMENSION(*)
C: long long*

Array of size n containing indices of the cells to which the
interpolation sites in array site belong.

Data Fitting Functions

45

Name Type Description

site Fortran: REAL(KIND=4)
DIMENSION(*) for
dfsinterpcallback
REAL(KIND=8) DIMENSION(*)
for dfdinterpcallback
C: float* for
dfsInterpCallBack
double* for
dfdInterpCallBack

Array of interpolation sites of size n.

r Fortran: REAL(KIND=4)
DIMENSION(*) for
dfsinterpcallback
REAL(KIND=8) DIMENSION(*)
for dfdinterpcallback
C: float* for
dfsInterpCallBack
double* for
dfdInterpCallBack

Array of the computed interpolation results packed in row-
major format.

params Fortran: INTEGER
DIMENSION(*)
C: void*

Pointer to user-defined parameters of the callback function.

Output Parameters

Name Type Description

status Fortran: INTEGER
C: int

The status returned by the callback function:

• Zero indicates successful completion of the callback
operation.

• A negative value indicates an error.
• A positive value indicates a warning.

See "Task Status and Error Reporting" for error code
definitions.

Description

When passed into the df?interpolateex1d routine, this function performs user-defined interpolation
operation.

See Also
df?interpolate1d/df?interpolateex1d
df?searchcellscallback

 Intel® Math Kernel Library

46

df?integrcallback
A callback function that you can pass into df?
integrateex1d to define integration computations.

Syntax

status = dfsintegrcallback(n, lcell, llim, rcell, rlim, r, params)
status = dfdintegrcallback(n, lcell, llim, rcell, rlim, r, params)
status = dfsIntegrCallBack(n, lcell, llim, rcell, rlim, r, params)
status = dfdIntegrCallBack(n, lcell, llim, rcell, rlim, r, params)

Include Files

• Fortran: mkl_df.f90
• C: mkl.h

Input Parameters

Name Type Description

n Fortran: INTEGER(KIND=8)
C: long long*

Number of pairs of integration limits.

lcell Fortran: INTEGER(KIND=8)
DIMENSION(*)
C: long long*

Array of size n with indices of the cells that contain the left-
side integration limits in array llim.

llim Fortran: REAL(KIND=4)
DIMENSION(*) for
dfsintegrcallback
REAL(KIND=8) DIMENSION(*)
for dfdintegrcallback
C: float* for
dfsIntegrCallBack
double* for
dfdIntegrCallBack

Array of size n that holds the left-side integration limits.

rcell Fortran: INTEGER(KIND=8)
DIMENSION(*)
C: long long*

Array of size n with indices of the cells that contain the
right-side integration limits in array rlim.

rlim Fortran: REAL(KIND=4)
DIMENSION(*) for
dfsintegrcallback
REAL(KIND=8) DIMENSION(*)
for dfdintegrcallback
C: float* for
dfsIntegrCallBack

Array of size n that holds the right-side integration limits.

Data Fitting Functions

47

Name Type Description

double* for
dfdIntegrCallBack

r Fortran: REAL(KIND=4)
DIMENSION(*) for
dfsintegrcallback
REAL(KIND=8) DIMENSION(*)
for dfdintegrcallback
C: float* for
dfsIntegrCallBack
double* for
dfdIntegrCallBack

Array of integration results. For packing the results in row-
major format, follow the instructions described in df?
interpolate1d/df?interpolateex1d.

params Fortran: INTEGER
DIMENSION(*)
C: void*

Pointer to user-defined parameters of the callback function.

Output Parameters

Name Type Description

status Fortran: INTEGER
C: int

The status returned by the callback function:

• Zero indicates successful completion of the callback
operation.

• A negative value indicates an error.
• A positive value indicates a warning.

See "Task Status and Error Reporting" for error code
definitions.

Description

When passed into the df?integrateex1d routine, this function defines integration computations. If at least
one of the integration limits is outside the interpolation interval [a, b], the library decomposes the integration
into sub-intervals that belong to the extrapolation range to the left of a, the extrapolation range to the right
of b, and the interpolation interval [a, b], as follows:

• If the left integration limit is to the left of the interpolation interval (llim< a), the df?integrateex1d
routine passes llim as the left integration limit and min(rlim, a) as the right integration limit to the
user-defined callback function.

• If the right integration limit is to the right of the interpolation interval (rlim> b), the df?integrateex1d
routine passes max(llim, b) as the left integration limit and rlim as the right integration limit to the
user-defined callback function.

• If the left and the right integration limits belong to the interpolation interval, the df?integrateex1d
routine passes them to the user-defined callback function unchanged.

The value of the integral is the sum of integral values obtained on the sub-intervals.

See Also
df?integrate1d/df?integrateex1d
df?integrcallback

 Intel® Math Kernel Library

48

df?searchcellscallback

df?searchcellscallback
A callback function for user-defined search to be
passed into df?interpolateex1d or df?
searchcellsex1d.

Syntax

status = dfssearchcellscallback(n, site, cell, flag, params)
status = dfdsearchcellscallback(n, site, cell, flag, params)
status = dfsSearchCellsCallBack(n, site, cell, flag, params)
status = dfdSearchCellsCallBack(n, site, cell, flag, params)

Include Files

• Fortran: mkl_df.f90
• C: mkl.h

Input Parameters

Name Type Description

n Fortran: INTEGER(KIND=8)
C: long long*

Number of interpolation sites.

site Fortran: REAL(KIND=4)
DIMENSION(*) for
dfssearchcellscallback
REAL(KIND=8) DIMENSION(*)
for dfdsearchcellscallback
C: float* for
dfsSearchCellsCallBack
double* for
dfdSearchCellsCallBack

Array of interpolation sites of size n.

cell Fortran: INTEGER(KIND=8)
DIMENSION(*)
C: long long*

Array of size n that returns indices of the cells computed by
the callback function.

flag Fortran: INTEGER(KIND=4)
DIMENSION(*)
C: int*

Array of size n, with values set as follows:

• If the cell with index cell[i] contains site[i], set
flag[i] to 1.

• Otherwise, set flag[i] to zero. In this case, the library
interprets the index as an approximation and computes
the index of the cell containing site[i] by using the
provided index as a starting point for the search.

params Fortran: INTEGER
DIMENSION(*)
C: void*

Pointer to user-defined parameters of the callback function.

Data Fitting Functions

49

Name Type Description

Output Parameters

Name Type Description

status Fortran: INTEGER
C: int

The status returned by the callback function:

• Zero indicates successful completion of the callback
operation.

• A negative value indicates an error.
• The DF_STATUS_EXACT_RESULT status indicates that cell

indices returned by the callback function are exact. In
this case, you do not need to initialize entries of the
flag array.

• A positive value indicates a warning.

See "Task Status and Error Reporting" for error code
definitions.

Description

When passed into the df?interpolateex1d or df?searchcellsex1d routine, this function performs a
user-defined search.

See Also
df?interpolate1d/df?interpolateex1d
df?interpcallback

Task Destructors
Task destructors are routines used to delete task descriptors and deallocate the corresponding memory
resources. The Data Fitting task destructor dfdeletetask destroys a Data Fitting task and frees the
memory.

dfdeletetask
Destroys a Data Fitting task object and frees the
memory.

Syntax

status = dfdeletetask(task)
status = dfDeleteTask(&task)

Include Files

• Fortran: mkl_df.f90
• C: mkl.h

 Intel® Math Kernel Library

50

Input Parameters

Name Type Description

task Fortran: TYPE(DF_TASK)
C: DFTaskPtr

Descriptor of the task to destroy.

Output Parameters

Name Type Description

status Fortran: INTEGER
C: int

Status of the routine:

• DF_STATUS_OK if the task is deleted successfully.
• Non-zero error code if the operation failed. See "Task

Status and Error Reporting" for error code definitions.

Description

Given a pointer to a task descriptor, this routine deletes the Data Fitting task descriptor and frees the
memory allocated for the structure. If the task is deleted successfully, the routine sets the task pointer to
NULL. Otherwise, the routine returns an error code.

Data Fitting Functions

51

	Data Fitting Functions
	Naming Conventions
	Data Types
	Mathematical Conventions
	Data Fitting Usage Model
	Data Fitting Usage Examples
	Task Status and Error Reporting
	Task Creation and Initialization Routines
	df?newtask1d

	Task Editors
	df?editppspline1d
	df?editptr
	dfieditval
	df?editidxptr

	Computational Routines
	df?construct1d
	df?interpolate1d/df?interpolateex1d
	df?integrate1d/df?integrateex1d
	df?searchcells1d/df?searchcellsex1d
	df?interpcallback
	df?integrcallback
	df?searchcellscallback

	Task Destructors
	dfdeletetask

